Department of Freshman Engineering

Differential Equations and Vector Calculus

Course		20BS1201		Yea	Year		Ι		Sem	Semester		II		
Code					<u> </u>									
Course		Basic Science		Bra	Branch		EEE		Cou	Course Type		Theory		
Category														
Credits			3		L-T	L-T-P			3-0-0		Prerequisites		Nil	
Continuous			30		Sem	Semester End		70		Tota	Total		100	
Internal					Eva	Evaluation				Mar	Marks			
Evalu	atio	n				C.		0						
Course Outcomes														
CO1	1 Understand the basic concepts of differential equations and vector calculus (L2).													
CO^2		Apply different methods to solve differential equations (1.3)												
CO_2	Ap	ppry unterent methods to solve unterential equations (LS).												
003	Ap	Apply the differential operator to calculate the divergence and flux of vector point functions												
CO4	Analyse the given differential equation to find the solution (L4).													
CO5	Ca	Calculate work done and flux by applying vector integral theorems (L4).												
CO6	Apply the concepts of differential equations and vector calculus to the given problem and submit													
	a report (L3).													
Contribution of Course Outcomes towards achievement of Program Outcomes &														
Strength of correlations (3:High, 2: Medium, 1:Low)														
	PO	1 PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1													2	1
CO2	3								2	2			2	1
CO3	3								2	2			2	1
CO4	CO4												2	1
CO5		3											2	1
CO6	3								2	2			2	1
							Syll	abus						1 0 0 1
Unit N	No.	0.11		<u> </u>			Syllabi	15					Mapped CO's	
1		Ordin	ary Dif	terenti	al Equ	ations	Of Fil	rst ord	er and	First d	egree:		001.0	~~
		Exact	differen	ntial e	quatio	ns, Ec	luation	s redu	icible	to exac	ct equat	tions,	CO1,CO2,	
	orthogonal trajectories in Cartesian and polar coordinates.									CO4,CO6				
Applications: Newton's Law of cooling, Law of Natural growth and decay.														
2	2 Linear Differential Equations of Higher Order: Operator D, rules for finding complementary function inverse encenter rules for finding complementary										ticular	CO1,CO2,		
		integra	d metho	od of v	ariation	n of nai	ameter	rs	<i>J</i> 1, 1010	5 101 111	ung par	liculai	CO4,C0	06
3		Partia	l Differ	ential	Equat	ions: F	Format	ion of	nartial	differer	ntial equ	ations		
5		Linear	equatio	ns of f	irst ord	ler. No	n-Line	ar equa	partial ations c	of first o	rder. Ch	arnit's	CO1,CO2,	
	method								urpit 5	CO4,CO6				
4		Vecto	r Differ	entiati	on: So	calar ai	nd vec	tor poi	nt func	ctions. v	vector or	perator	GO1 G	
_		del, de	l applie	s to sca	lar poi	int fund	ctions-	Gradie	nt, del a	applied	to vector	r point	CO1,CO3,	
	functions- Divergence and Curl.									T	CO5,CO6			
5	5 Vector Integration: Line integral, surface integral, volume integral,													
	Green's theorem in the plane, Stoke's theorem, Divergence theorem (All									CO1,C0	CO1,CO3,			
	theorems without proof). CO5,CO6										06			

PVP20

Department of Freshman Engineering

Applications: work done, flux.										
Learning Resources										
Text Books										
1. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 44/e, 2019.										
2. Erwin Kreyszig, Advanced Engineering Mathematics, 9/e, John Wiley & Sons, 2006.										
Reference Books										
1. R.K.Jain and S.R.K.Iyengar, Advanced Engineering Mathematics, 3/e,	Alpha	science								
International Ltd,2002										
e- Resources & other digital material										
1. https://nptel.ac.in/courses/111/105/111105121/										
2. https://nptel.ac.in/courses/111/105/111105122/										
3. https://nptel.ac.in/courses/111/107/111107108/										
4. http://202.53.81.118/ -> PVPSIT FED Moodle										

PVP20